师晴晴
江苏安科瑞电器制造有限公司,江苏江阴 214405
摘要:随着电力工业的快速发展和对发电企业节能减排的力度加大,电能量的产出和投入比已成为衡量现代化率电厂的重要指标。电能管理软件的应用大大提高了电能量的利用效率和管理水平,本文介绍基于网络电力仪表的Acrel-3000电能管理系统在合肥电厂电能管理中的应用,系统实现了分散式采集和集中控制管理的智能化、数字化、网络化电能管理。 ------皖能合肥电厂电能量计量管理系统设计方案
关键词:火力发电厂;网络电力仪表;电能管理
0 引言
电力工业是国民经济发展中重要的基础能源产业,火力发电又是生、产、生活的主要用电来源。随着国民经济的迅速发展,用电需求的逐年上升,电能的消耗逐年刷新。据统计数据显示2010年全国发电量41,413亿千瓦时,比上年增长13.3%。在有限的煤资源的前提下,减少能源浪费,不仅要从用户节约用电着手,更要从发电企业减少发电损耗着手。随着计算机科学、网络技术和网络电能表的发展,电能数据的统计及管理已进入智能化、数字化、网络化。本文就皖能合肥电厂电能管理系统为例介绍电能管理系统在电厂中的应用。
1 项目简介
皖能合肥发电厂位于合肥市北部规划的能源工业区内,电厂始建于六十年代,属地区性电厂。电厂新建#5机组(1×600MW)已于2009年1月正式投入运行。本项目主要对厂内#5机组各高低压回路用电状况进行自动化管理。#5机组共包括:6kV备用段、综合段、公用段、6kV工作段、6kV脱硫段、翻车机、输煤段。各段开关室配电柜中均安装了安科瑞电能表,详细电表配置信息如表一所示。该电能表带有RS485通讯端口,可为上位机提供电表所采集的电参量数据。为了能实现对电厂电能量数据进行自动采集、远传和存储、预处理、线损统计及分析的电能综合管理平台,合肥电厂电能量管理系统采用了上海安科瑞电气股份有限公司的Acrel-3000电能管理软件,电能管理软件把现场的电能仪表联在一起,做到了自动采集、集中控制、智能管理。同时本电能管理系统还具备同厂内SIS(监控信息系统)以及MIS(管理信息系统)共享电能数据。
2 设计方案
2.1 设计标准
GB2887-2000 《计算站场地技术要求》
GB/T13729-2002 《远动终端通用技术条件》
DL478-2001 《静态继电保护及自动装置通用技术条件》
DL/T400-2010 《继电器和自动装置技术规程》
DL/T 814-2002 《配电自动化系统功能规范》
DL/T634-2002 《远动设备和系统传输规约基本远动任务配套标准》
DL/T721-2000 《配电网自动化系统远方终端》
DL/T770-2001 《微机变压器保护装置通用技术条件》
GB/T50063-2008 《电力装置的电测量仪表装置设计规范》
GB-14285-2006 《继电保护和自动装置技术规程》
GBJ232-2002 《建筑电气工程施工质量验收规范》
GB/T15145-2001 《微机线路保护装置通用技术条件》
GB50171-2006 《电气装置安装工作盘、柜及二次回路结线施工及验收规范》
GB/50198-2011 《监控系统工程技术规范》
GB/T17626.5 《浪涌(冲击)抗扰度试验》
DL/T5003-2005 《电力系统调度自动化设计技术规程》
2.2 系统结构
整个系统采设计了一套Acrel3000电能管理系统,采用分层分布式结构,即现场设备层、网络管理层、监控管理层,如图1所示:
图一
整套电力监控系统监控管理部分包括监控管理主机、打印机、UPS电源等;该配电系统分成七个部分:6kV备用段、综合段、公用段、6kV工作段、6kV脱硫段、翻车机、输煤段。其中6kV备用段及综合段相距550米,设计将6kV备用段内所有电力仪表通过485总线连接至综合段内通讯管理机,并经过光纤传至网络机房;翻车机、输煤段距离网络机房距离较远,分别采用一个通讯管理机,并经过光纤传输至网络机房;共用段内71快电力仪表与6kV工作段内电力仪表均连至公用段内通讯管理机,并通过光纤传至网络机房;脱硫段6kV内所有电力仪表均通过485总线连至公用段内通讯管理机,与公用段内电力仪表信号一起传输至网络机房。
配电系统的数据采集主要通过现ACR网络多功能仪表及PT、CT将现场各回路电力系统运行参数,包括电流、电压、功率等遥测信息以及断路器分合闸状态、保护信息以及故障等开关量状态;现场设备将所采集和处理过的信号经屏蔽双绞线上传只通讯管理机经光纤或者五类线等媒介上传至站控管理层。各间隔级单元相互独立的存在于整个通讯网络中,增强了整个系统的可靠性及可用性。ACR网络多功能仪表及微机综合保护装置采用RS485接口和MODBUS-RTU通讯协议,RS485采用屏蔽线双绞线传输,接线简单方便;通讯接口是半双工通信,数据高传输速率为10Mbps。RS-485接口是采用平衡驱动器和差分接收器的组合,抗噪声干扰能力增强,总线上允许连接多达32个设备,大传输距离为1.2km。
整个配电系统以计算机站控管理系统为核心,采用现代通讯技术,对整个配电系统的用电状况进行统一管理,实时监测每个环节、每种设备的用电量;实时监测、监督电能质量,及时发现用电故障,避免用电的浪费。
2.3 主要实现功能
电能统计及分析
对信号采集系统所采集实时数据进行统计、分析、计算,将数据进行定时存储。并通过计算产生每日/周/月/年用电量;每日/周/月/年大负荷及大负荷出现时间,对存在故障隐患的设备及时提出整改;通过电能分时计量累计电费,对不合理用电单位提出科学合理的改进;通过逻辑运算计算出设备正常、异常出现次数,存储事故发生时间、原因。电能报表及电能棒图分别如图2所示:
图二
画面显示
19寸彩色液晶显示作为人机交互界面,实时显示配电系统各种信息画面,包括各断路器当前状态、各回路当前电压、电流、功率等测量值的实时信息。声光提示报警信息、保护设备动作及复位信息。实时画面如图3所示:
图三
数据共享
实现基于“电量采集服务器”的“镜像服务器”,其中:“电量采集服务器”部署于Ⅱ区生产网内,为生产区用户服务(值长等生产人员)。“镜像服务器”也部署于Ⅱ区生产网内,待网闸接入后在进行逻辑区的调整。
“电量采集服务器”与“镜像服务器”之间以UDP模式进行数据传输。即将网闸串联在“镜像服务器”和“电量采集服务器”之间,并将“镜像服务器”接入MIS网,供MIS网用户(经营部门)访问和应用。
3 系统特点
通讯线接点少,画面显示直观,数据刷新快,及时反应现场设备的运行状况,同时系统操作简单,方便用户使用,各种功能可根据用户的需求灵活变化,系统的设计快捷方便,修改软件也不繁琐。
4 结束语
本文的配电自动化监测报警系统功能平台,实现的是基于B/S结构模式下的一种监测软件,在电力监控系统中配置网络电力仪表,方便实时地监控配电系统的运行状态,对现场的用电设备进行统一管理,免去工作人员到现场记录的繁琐工作,逐步提高配电自动化监测报警的水平。
参考文献
[1].任致程 周中. 电力电测数字仪表原理与应用指南[M]. 北京. 中国电力出版社. 2007. 4
[2].周中.电力仪表在大型公共建筑电能分项计量中的应用[J].现代建筑电气 2010. 6